
1

POSSIBILITIES FOR UNIFYING E-

COMMERCE PLATFORMS

A RESEARCH AND DEVELOPMENT OF E-COMMERCE WEBSITE TEMPLATE

Graduation Thesis

by Atanas Yonkov

Charged by Fontys Hogescholen, Eindhoven Commissioned by Merkle, Bulgaria

2

ABSTRACT

This thesis addresses the challenges encountered in the development of customized e-commerce websites, with a focus on optimizing the

process through the creation of a reference architecture. The study centers around Merkle Inc., a specialized customer experience Management

Company renowned for its e-commerce website development.

The research objectives encompass the identification of essential e-commerce reference architecture features, an exploration of the benefits

these websites offer to customers, and an analysis of Merkle's backend systems. To achieve these aims, the study adopts the ICT DOT

framework, utilizing literature studies and field interviews.

During the course of the investigation, two valuable tools were discovered to enhance backend development. The first tool involves leveraging

TypeScript in conjunction with Redux and React to efficiently extract data from the backend. TypeScript proves instrumental not only on the

frontend but also for handling API responses, saving time through precise typification of data and facilitating seamless integration with the

Redux store.

Additionally, the study identifies Nodemon as an invaluable tool for Node.js applications. Nodemon automates server restarts upon detecting

modifications to the source code, eliminating the need for manual intervention. This streamlines the development workflow, enhancing

efficiency and reducing downtime during the development phase.

3

It is essential to acknowledge the study's limited generalizability, as it specifically focuses on the challenges faced by Merkle in e-commerce

website development. Nonetheless, the detailed insights into the reference architecture and associated technologies contribute valuable

knowledge to this domain.

The thesis follows a structured chronological approach, with individual chapters dedicated to significant milestones. Beginning with an

overview of Merkle's challenges and the objective of creating the reference architecture, subsequent chapters delve into the company's

background, analyze research questions, and propose potential solutions through technology exploration. The study concludes with a proof of

concept, showcasing the practical implementation of identified solutions in an e-commerce website.

This research significantly contributes to the optimization of e-commerce website development, addressing specific challenges faced by

Merkle. The incorporation of TypeScript, Redux, React, and Nodemon as powerful backend development tools further enhances the

productivity and efficiency of developers in this competitive e-commerce market. The findings presented herein are expected to aid Merkle's

success and hold the potential to benefit other organizations navigating similar challenges in e-commerce website development.

4

TABLE OF CONTENTS

1. INTRODUCTION.. 9

1.1. READING GUIDE ... 10

2. BACKGROUND .. 11

2.1. About the company ... 12

3. THE ASSIGNMENT ... 13

3.1. Main Research Question ... 14

3.2. Problem Statement .. 14

3.3. Project Goals ... 14

3.4. Problem Analysis .. 15

3.5. Research framework and methodologies .. 16

3.6. Sub-questions .. 17

3.6.1. Essential features of a reference architecture for e-commerce website development ... 17

3.6.2. How to connect the reference architecture with existing technologies? ... 18

3.6.3. Designing the reference architecture and development considerations? ... 18

3.6.4. How can the effectiveness of the project be evaluated? ... 18

4. STARTING PHASE .. 19

4.1. Initial orientation ... 19

4.1.1. Overview of ecommerce platforms .. 20

4.1.2. Identification of key features and functionalities ... 23

4.2. Connecting reference architecture with existing technologies ... 28

5

4.2.1. How to connect the reference architecture with existing technologies? .. 28

4.2.2. What is headless development? ... 30

4.2.3. How to implement and utilise gathered findings in the context of Merkle? .. 32

5. DEVELOPMENT PHASE .. 35

5.1. DEVELOPING FEATURES FOR MERKLE .. 36

5.1.1. How to develop features in an effective way for Merkle? ... 37

5.1.2. What does it mean to design code for scalability and maintainability in the long run? .. 39

5.1.2.1. Future-proofing the code on the front-end .. 39

5.1.2.2. Help devs be efficient on the back-end ... 42

5.3 IMPLEMENTATION .. 39

7. CONCLUSION .. 50

Demo .. 50

GitHub Repository ... 50

9. RECOMMENDATION ABOUT INTEGRATION .. 52

REFERENCES ... 53

APPENDICES .. 56

 Appendix A – Project plan .. 56

 Appendix B - Research Document ‘Essential features of reference architecture for e-commerce websites’ .. 61

 Appendix C – Research Document ‘Connecting Reference Architecture with existing technologies’ ... 68

 Appendix D - Research Document ‘Designing and Developing Features for Merkle’ .. 72

 Appendix F – Screenshots of website final version .. 84

6

List of Table

Table 1: MoSCoW Table. .. 27

List of Figures

Figure 1 Line Graph displaying the value of customer experience management for a business | Source: https://www.kyinbridges.com/the-top-

companies-in-customer-experience-management/ .. 23

Figure 2. Visual separation between head and body in software development ... 31

Figure 3: Survey responses – frameworks used on the back-end. ... 36

Figure 4: Survey responses – frameworks used on the front-end .. 38

Figure 5: Data flow of states with Redux Source: https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4 .. 39

Figure 6. Data flow of states with Redux Source: https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4 .. 40

Figure 7. The API is the folder dedicated for the backend (business logic), ... 43

Figure 8. Representation of MVC in the folder structure of the repository the front-end for the react app components. .. 43

7

Figure 9. Code view of the navigation bar with React. .. 44Figure 10. Front-end

folder. ... 44

Figure 11. Redux Reducer designated to retrieve content based on changes on the front-end. .. 45

Figure 12. Typification of the response returned from the API for the Product Description Page (PDP). ... 46

Figure 13. Folder structure of redux components. ... 46

8

GLOSSARY

A API

API stands for Application Programming Interface. Through this

interface, computer applications can communicate with each

other.

C Client

In the context of my project, I would refer to Merkle as the client

of this project.

Customers

In the context of my project, I would refer to customers as the

customers who shop from the retailer brands.

R Retailers

In the context of my project, I would refer to retailers as the

brands that happen to be clients of Merkle.

S SPA (Single Page Application)

A website or web application that dynamically rewrites a current

web page with new data from the web server, instead of the

default method of a web browser loading entire new pages.

9

1. INTRODUCTION

Merkle Inc., a distinguished customer experience management

company, plays a pivotal role in the development of customized

e-commerce websites for its clientele. As the e-commerce

industry continues to witness unprecedented global growth over

the past two decades, online retailers have leveraged this

momentum to expand their customer base and achieve heightened

business outcomes and profits (Masyhuri, 2022). Nevertheless,

amid these opportunities, the realm of e-commerce development

faces an array of challenges that warrant meticulous examination

to optimize business results.

This thesis delves into a comprehensive exploration of the

challenges intrinsic to e-commerce development, with a particular

focus on Merkle's unique approach. By studying Merkle's process,

this research endeavors to uncover invaluable strategies and

solutions that can significantly enhance the efficiency and

efficacy of e-commerce website development. As the e-commerce

industry continues to evolve, this study holds the potential to

drive meaningful advancements and contribute to the success of

businesses operating in this dynamic and competitive landscape.

Firstly, the thesis aims to understand the essential features of an e-

commerce reference architecture, explore the benefits of e-

commerce websites for customers, and analyses the backend

systems used. By connecting the reference architecture with

existing technologies. Secondly, the research study will figure out

the technological domain that Merkle operates with by doing

literature and field studies, the research will also investigate

possible solutions how to connect the established reference

architecture in the context of Merkle’s already used technologies.

10

A major limitation of this study is its limited generalizability. The

study focuses specifically on Merkle's process of ecommerce

website development and its associated challenges.

Therefore, the findings and conclusions may have limited

generalizability to other companies or industries, as the research

scope is narrow. The research method will use the best approach

from the ICT DOT framework, each milestone in the research

with chapters will be separated chronologically and set the

relevant sub-questions. To answer some other questions,

Literature study, Interview research method from the ICT DOT

(Methods - ICT Research Methods, n.d.) framework was utilized

and analyzed. The findings from this thesis will contribute to the

comprehensive exploration of developing and implementing a

reference architecture for optimized ecommerce website

development, addressing the challenges faced by Merkle and

contributing to their success in the competitive market.

READING GUIDE

The thesis begins with an introduction that outlines the challenges

faced by Merkle in developing customized e-commerce websites

and the goal of creating a reference architecture. It then explores

the importance of e-commerce websites and their benefits for

businesses and customers.

In the first chapter a background for the company will be

provided, in order to understand what exactly the purpose of the

Merkle is.

In the second chapter where I analyzed the given assignment, I

figured out a research question, what is the cause of the

assignment, what needs to be done in order to help Merkle resolve

the problem. I also split the assignment in relevant sub-questions

by topics in chronological order - from the orientation phase of

the project - where I start to investigate Merkle and how it

operates.

11

Coming through concepting possible solutions and later the

process of implementing them into a proof of concept - example

e-commerce website that uses the technologies, solutions and

approaches that I found during the execution of the project.

Each main chapter is identified with a big point - 1. Then the

relevant sub-chapters begin with one more indentation - 1.2. Their

purpose is to give an overview of the sub-question that will be

answered in them. Follow-up research questions and pieces of the

research will be yet indicated with one more indentation 1.2.3 and

1.2.3.4.

12

2. BACKGROUND

This graduation project was commissioned by Merkle - a

customer experience management company with offices all

around the globe. This specific assignment was commissioned by

the Bulgarian branch of Merkle.

The main goal of this project was to research a solution that

would help the business department have a quick to-go solution

when pitching a project for a client, and on the other hand assist

developers by supplying them with a starting point for a new

client’s project.

This chapter will go into detail who are Merkle and their sphere of

influence.

2.1. About the company

Merkle is a prominent company operating in the e-commerce

industry. Their focus is providing a comprehensive one-stop

solution for the online commerce presence of various retailers.

With a team of over 350 skilled software engineers, architects,

QA engineers, and support specialists based in a technology

center in Sofia, Merkle has an impressive track record of creating

and managing e-commerce platforms for big international brands

and retailers. They have successfully launched over 400 e-

commerce websites in 60 countries across 6 continents (Merkle

Inc. 2023).

Online retail has been experiencing significant growth over the

years and is expected to continue expanding in the future. E-

commerce has emerged as a major player in the retail industry,

revolutionizing the way we think about shopping and financial

transactions (George Washington University, 2020b). Its

13

convenience and cost-effectiveness have contributed to its

paradigm-shifting impact. As part of this dynamic e-commerce

landscape, companies like Merkle play a crucial role in addressing

various challenges and opportunities. Some of the common issues

that online retail companies face include enhancing customer

experience, optimizing e-commerce platforms for better

performance and loading times, ensuring robust security features

to protect sensitive customer data and prevent fraud, and focusing

on scalability to handle a growing number of customers and

transactions (Merkle Inc 2023).

Merkle Logo, source: (dentsu. (n.d.). Dentsu.

https://www.dentsu.com/us/en/who-we-are/our-agencies/merkle)

https://www.dentsu.com/us/en/who-we-are/our-agencies/merkle

14

3. THE ASSIGNMENT

3.1. Main Research Question

What strategies can be employed to develop and implement an

optimized reference architecture website for unifying e-commerce

platforms, to streamline the development process and enhance the

pitching strategy?

3.2. Problem Statement

The company faces challenges in creating customized websites

for brand clients, as the current approach involves duplicating

existing websites and making adjustments for each new brand.

This results in the accumulation of legacy code, making

maintenance and upgrading difficult, and subsequently leading to

slow delivery and potential loss of new clients. Therefore, there is

a need to develop and implement an optimized reference

architecture website that unifies e-commerce platforms,

streamlines the development process, and enhances the pitching

strategy.

3.3. Project Goals

The main objective of the project is to develop and launch a

functional e-commerce website using a reference architecture

approach.

The company, Merkle, aims to create a streamlined and basic

website that serves as a foundation for future projects with new

clients, focusing on essential features rather than specific styling

or product catalogues.

The goal is to enable software engineers to efficiently customize

15

websites according to each customer's specific requirements,

saving time and effort in the development process.

By implementing this reference architecture strategy, Merkle aims

to enhance their ability to attract and retain customers effectively.

The purpose is to streamline the website development process and

offer tailored solutions promptly, ultimately accelerating the

acquisition of new retailers and expanding their customer base in

less time.

The successful implementation of the reference architecture

approach is expected to contribute to increased profitability for

the company.

3.4. Problem Analysis

The initial phase of the research involved conducting interviews

with colleagues and the company mentor to identify the root cause

of the problem within Merkle, exploring the interrelation between

inefficient development and client acquisitions.

The next step focused on understanding the technological domain

in which Merkle operates. This involved conducting literature and

field studies to gain insights into the specific technologies used by

Merkle and to determine how the proposed solutions could be

adapted accordingly.

The subsequent phase investigated potential solutions, specifically

focusing on integrating the reference architecture within the

existing technological landscape of Merkle.

This phase aimed to identify strategies for effectively connecting

the reference architecture with the technologies already in use.

The fourth and final phase of the project centered on the

development of the reference architecture itself. Drawing on the

16

findings from the previous analysis, the focus was on meeting the

specific needs identified during the research.

The development process aimed to address challenges faced by

developers, optimizing code writing practices to minimize the

need for rewriting old functionalities, reducing time spent on

fixing bugs, and improving the maintenance of existing features.

3.5. Research Framework

The Framework I will be using organizes the research chapters

chronologically, based on the milestones and sub-questions

identified. Adopting the ICT DOT framework, this framework

provides a structured approach for problem-solving and decision-

making in my research.

I then conducted a thorough analysis of the results obtained,

comparing and contrasting the different solutions based on their

effectiveness, feasibility, and alignment with Merkle's specific

context and provided conclusions on the best answer for each sub-

question.

17

3.6. Sub-questions

I have adapted the research questions from the project plan (Appendix A) based on the problem analysis from point 3.4.

What strategies can be employed to develop and implement an optimized reference architecture website for unifying e-commerce

platforms, to streamline the development process and enhance the pitching strategy? During the process the most employed

methodologies were: literature review study, case study, and interviews with developers.

3.6.1. Essential features of a reference architecture for e-commerce website

development

To study this the following sub-questions were asked:

3.6.1.1. What do e-commerce websites do and what do they solve?

3.6.1.2. What backend systems are used?

3.6.1.3. What are the most important features that should be included to meet users' experience expectations?

18

3.6.2. How to connect the reference architecture with existing technologies?

This will investigate the integration of the reference architecture with existing technologies and addresses the following sub-questions:

3.6.2.1. What is headless development and how does it work?

3.6.2.2. How to implement and utilize gathered findings in the context of Merkle?

3.6.3. Designing the reference architecture and development considerations?

This will explore the design aspects of the reference architecture and addresses the following sub-questions:

3.6.3.1. How to develop features in an effective way for Merkle?

3.6.3.2. What does it mean to design code for flexibility and maintainability in the long run?

3.6.4. How can the effectiveness of the project be evaluated?

3.6.4.1. How can the project be tested and validated?

19

4. STARTING PHASE

In this phase of the project, I began to answer the sub-question in chronological order. I call it a conception phase because this is the chapter

where I try to understand what e-commerce solves as a whole and concept possible solutions in the context of Merkle. The objective of this

phase was to identify a list of features that would need to be implemented and the platform necessary for adaptation.

4.1. Initial orientation

To begin, I analyzed the task and wanted to understand the business domain of e-commerce websites, so that I could adjust my technical

knowledge and further research to be as relevant as possible. In the sub-points below I answered the question: What are the essential features

of a reference architecture for e-commerce website development? Splitting this question into relevant sub-question and answering them

methodologically should enable me to precisely find the requirements for the next important point - 4.2

20

4.1.1. Overview of ecommerce platforms

What platforms do e-commerce websites use and what do they

solve, and most importantly – which platform does Merkle

use?

Methodology:

To answer this question a mixed approach from the dot

framework that involved conducting a literature study of various

e-commerce platforms such as Amazon, eBay, Alibaba, Adobe

Magento etc., expert interviews and community research. The

participants in this study were 16 developers from different teams

within Merkle. The data analysis process involved organizing the

data into themes that were relevant to the research question and

examining the data for patterns and trends. The result of this study

indicated that the e-commerce field operates mostly few types of

platforms. Conclusively, the information obtained from the study

led to the question of which of these content management systems

(platform) Merkle operate and how the finding could benefit the

development of reference architecture.

Results:

Baidu, Alibaba, and Tencent (BAT) represent China's digital

economy and are major international competitors to US-based

digital technology giants. This literature review examines the

business strategies and offerings of BAT and compares them with

other e-commerce platforms, including Merkle. The BAT

companies compete for domestic and international market share,

user base, and possession of underlying data, profitability, and

technological innovation. While they possess both similarities and

differences, they represent a significant challenge to the global

economic order and the power of nation-states (Su & Flew, 2021).

21

Rahman's (2021) paper identifies Alibaba as the world's fastest-

growing e-commerce marketplace, providing opportunities for

small and medium-sized enterprises to do business in local and

global markets through its various platforms. This finding

highlights the importance of Alibaba's business model and

frameworks in the e-commerce industry. These features are

compared to the offerings of Merkle's platform and it shows that

both Alibaba and Merkle offer valuable opportunities for

businesses in the e-commerce industry. Alibaba's widespread

reach makes it an attractive choice for companies looking to tap

into global markets, while Merkle's expertise in creating tailored

e-commerce platforms makes it a compelling option for

businesses seeking optimization and enhanced customer

experiences.

Al Moaiad's (2023) research study compares eBay and Amazon's

business models, marketing strategies, and revenue models. This

study concludes that eBay has empowered supply and demand on

the web with great outcomes, while Amazon has introduced

several features to facilitate easy purchasing by customers.

Amazon's features, including Amazon Web Services and Amazon

Mechanical Turk, are also discussed.

These features are compared to the offerings of Merkle's platform.

Merkle's platform helps businesses gain a single view of their

customers and deliver the right experiences through media, CRM,

and loyalty programs. The platform's benefits include a reduction

in acquisition costs, more efficient spending, and the reward of

long-term customers.

The platform is compared to the other e-commerce platforms

discussed in the literature review. Targeted interviews within the

company reveal that Merkle operates by implementing CXM with

22

the help of SalesForce Commerce Cloud. This implementation is

discussed in comparison to the other platforms discussed in the

literature review. (Appendix B & Figure 1).

Conclusion:

This literature review aimed to answer the research question of

which e-commerce platforms websites use and what problems

they solve. The review discussed the business strategies and

offerings of the BAT companies, Alibaba, eBay, and Amazon,

and compared them to the offerings of Merkle's platform, the

study proposes an efficient Development Process: By adopting

proven strategies and frameworks from the literature study and

case studies, the development process will be streamlined and

more efficient.

In conclusion, this literature review highlights the importance of

choosing the right e-commerce platform based on specific needs

and the benefits it can bring in terms of business growth and

customer satisfaction. The findings of the studies can inform the

development of Merkle's platform and help it compete with other

e-commerce platforms through its unique value proposition and

key differentiators such as the Optimization for Performance and

Loading Time. Further research could explore the effectiveness of

CXM and Sales Force Commerce Cloud in different industries

and business contexts.

23

Figure 1 Line Graph displaying the value of customer experience

management for a business | Source: https://www.kyinbridges.com/the-top-

companies-in-customer-experience-management/

https://www.kyinbridges.com/the-top-companies-in-customer-experience-management/
https://www.kyinbridges.com/the-top-companies-in-customer-experience-management/

24

4.1.2. Identification of key features and functionalities

Cause of the question:

The study has identified the specific e-commerce domain and software that Merkle operates in. this research sub-question aimed to understand

what makes e-commerce valuable to customers, by finding out which features end-users find useful. This information can inform the

development of e-commerce websites with the clients of Merkle, who are retailers that have e-commerce websites in mind. Incorporating

useful features can enhance the value of e-commerce websites to Merkle's clients, ultimately benefiting the company.

Question:

What are the most important features that should be included to meet users' experience expectations?

Methodology:

These research question findings would help to better understand the technical context of the assignment and set clear guidelines for features

of the MoSCoW in order to implement later.

The research design involved a mixed-methods approach to identify valuable features in e-commerce websites. The study used case studies of

well-known successful e-commerce brands including eBay, Alibaba and Amazon to identify features that overlap and are useful. The study

also employed a literature research on general good features for e-commerce to validate the results. The data collection methods was from

25

case studies and literature review, I then analyzed the data collected from survey (Appendix E) to determine which features overlap and are

useful. The survey was sent in the most popular channel in our ‘Slack’ and was targeted to the technical people in the company – developers,

quality assurance specialists and dev leads. The themes discussed were about general opinions of developers on code maintenance in the long

run and project specific questions related to which are the bottlenecks for the developers. The answers received counted 16 by the end of the

survey, which lasted 5 working days.

Results:

The study found that end-users highly value e-commerce features that are user-friendly, efficient, and personalized. Specifically, participants

rated features such as easy navigation, clear product descriptions, and personalized recommendations as highly useful. In addition, participants

expressed a preference for e-commerce websites that offer multiple payment options, fast and reliable shipping, and easy returns.

Incorporating these features into e-commerce websites can enhance their usefulness and increase their value to Merkle's clients. (White, 2021

and Cassidy, 2020).

The study compared Merkle's platform with the e-commerce platforms of Alibaba, Amazon, and eBay. Alibaba's success can be attributed to

its numerous platforms that provide opportunities for small and medium-sized enterprises to do business in local and global markets (Yogish

& Nandha, 2021). Amazon's focus on customer satisfaction metrics and personalization can inform Merkle's approach to enhancing the user

26

experience (Round, 2004). eBay's robust feedback and rating system, easy navigation, high-quality product images and videos, and user-

generated reviews and ratings can inspire Merkle's efforts to increase the value of its platform to clients (eBay.com USA 2023).

Conclusion:

The research question aimed to identify the most important features that should be included to meet users' experience expectations in e-

commerce websites. The study's findings then suggest that to create a positive user experience, e-commerce websites within Merkle should

prioritize mobile-friendliness, easy navigation, high-quality product images and videos, user-generated reviews and ratings, fast loading times,

secure checkout processes, and personalization based on customer preferences and behaviors. These features enhance customer satisfaction

and loyalty, leading to higher returns on investment for businesses.

To guide the development phase, the study enabled the creation of a MoSCoW table that prioritizes the identified functionalities. The

MoSCoW table provides a clear guide for the development team, and it was developed by incorporating the most important features and

identified functionalities into the platform first, leading to an enhanced user experience and higher value for Merkle's clients (Appendix B).

27

Table 1: MoSCoW Table.

Must-Have Should-Have Could-Have Won't-Have

User Registration and

Authentication: Allow

users to create accounts,

log in, and securely

authenticate their identities.

Responsive Design: Ensure the

website is optimized for various

devices and screen sizes to provide

a seamless user experience.

Social Media Integration: Allow

users to share products on social

media platforms, increasing

brand exposure and potential

sales.

Multilingual Support:

Exclude multilingual

support in the initial

development phase,

focusing on a single

language.

Product Catalog

Management: Enable

administrators to add, edit,

and delete products,

including details like

images, descriptions, and

prices.

Product Filtering and Sorting:

Allow users to filter products

based on attributes (e.g., price

range, brand, color) and sort them

by relevance, price, popularity, etc.

Personalized Recommendations:

Implement recommendation

algorithms to suggest related

products based on user

preferences and browsing history.

Advanced Analytics and

Reporting: Omit

comprehensive analytics

and reporting features,

such as sales reports or

customer behavior

analysis.

Shopping Cart

Functionality: Allow users

to add products to their

carts, review and modify

cart contents, and proceed

to checkout.

Wishlist: Enable users to create

and manage wish lists, save

products for future purchases, and

share them with others.

Multiple Payment Options: Offer

various payment methods, such

as credit cards, digital wallets,

and alternative payment

gateways, to accommodate

different user preferences.

Social Login: Exclude the

ability for users to log in

or register using their

social media accounts.

Payment Gateway

Integration: Integrate with

a secure payment gateway

to process online payments

from customers.

Product Reviews and Ratings:

Allow users to leave reviews and

ratings for products, enhancing

credibility and helping others

make informed decisions.

Order Tracking for Customers:

Provide a tracking feature for

customers to monitor the status

and location of their orders.

28

4.2. Connecting reference architecture with existing technologies

At this point, the main goal was to gather more information about the Salesforce Commerce Cloud (SFCC) field to ensure that the solution

meets the requirements to run on the SFCC platform. The research aimed to identify the best techstack to be adapted for the SFCC domain, in

order to optimize the product's performance and functionality. By understanding the SFCC platform's code wise operations and the most

suitable techstack. (Appendix C)

4.2.1. How to connect the reference architecture with existing technologies?

Question:

As mentioned before, I wanted to get more information about the

way SFCC works. That is the reasoning behind this exact

question, what backend does it use and how does it work?

Methodology:

The research design involved a literature study and access to a

repository for a project in a company with the most developers

working on the SFCC platform. The data collection methods and

analysis included a literature study of official SFCC

documentation to find relevant information related to the

techstack and from the repository access.

Results:

The results I got were happily straightforward, but more

complicated than I imagined. It seemed that the salesforce

29

commerce cloud used a very specific structure for the codebase of

a project (Tryzens, 2021). SFCC is run by utilizing different

cartridges for different parts of the code. For simplicity, you can

imagine these cartridges as different components in an

automobile. For example, one cartridge with a few hundred file of

code was dedicated solely for third party integration of a payment

system. This was then connected with another cartridge which

was only dedicated for the front-end functionalities of the code

(Cloudinary, 2023). Like a vehicle, in order for just the engine to

start, we need a motor, a starter, fuel pump, etc. They were

interlinked with each other. The thing I noticed were the tons of

legacy code, making it ever so difficult to understand what the

flow of commands was. For the backend, salesforce provides

separate functions that could be adapted for each component in an

e-commerce website - basket page, product details page and so

on. The functions were in of course another cartridge and utilized

controller-based endpoints. Endpoints are used on the front-end to

retrieve data from the backend (Vsupalov, 2022).

Another finding here was coming from one of the sales force’s

official blogs. It seems that in the past there were various

approaches to build an application on Salesforce. What I found

was that they are looking forward to implementing the headless

development approach, this is something new - what is headless

development is a question that emerged, which will require

further study in the next phase.

Conclusion:

In conclusion, the research question aimed to explore how to

connect the reference architecture used by SFCC with existing

technologies. To answer this question, a literature study was

conducted on SFCC, focusing on the official documentation to

gain insights into the backend technology used by the platform.

30

Additionally, access to a repository for a project in a company

with the most developers working on SFCC was requested to gain

practical insights into the backend technology.

The research findings suggest that SFCC projects work via a

complex set of cartridges and controller-based endpoints, which

for Merkle were written in legacy code, making it difficult to

maintain. This should be taken into account when thinking of a

solution on the backend, and it is important to consider the best

backend framework to use to optimize performance and

maintainability.

4.2.2. What is headless development?

Cause of the question:

Having gained an understanding of SFCC and its functionality, I

have developed new questions based on previous conclusions.

This research question aims to comprehend the concept of

headless development. That would help me to have a clear guide

when choosing a framework for the front-end and back-end. That

is the cause behind this question - understand headless and after

that find the best framework.

Methodology:

The research methodology involves conducting a literature study

to investigate the concepts of headless development, the problems

it solves, and its implications for building the reference

architecture, also Data is extracted from the selected sources and

synthesized to identify common themes and patterns related to

headless development and data is analyzed and interpreted to

draw conclusions and make recommendations regarding the use

of headless development when building the reference architecture.

31

Results:

In the context of Salesforce Commerce Cloud, headless

development can be highly beneficial for businesses that want to

provide engaging and personalized experiences to their customers

across multiple touch points (Medium, 2021). By separating the

front-end logic from the back-end data management, developers

can focus on building custom front-end experiences using any

technology they choose, without impacting the back-end system.

This allows for quicker iteration and adaptation to changing

customer needs and market trends.

One of the key benefits of headless development in Commerce

Cloud is the ability to provide consistent experiences across

different channels (Jain, 2023). By creating reusable components,

businesses can ensure that customers have a seamless experience

regardless of the channel they use to interact with the business.

This not only saves development time, but also helps to improve

customer satisfaction and loyalty.

Another important benefit of headless development in Commerce

Cloud is the ability to leverage third-party services and

integrations. (Medium, 2023). With APIs, businesses can easily

integrate with other systems and services, such as payment

gateways, social media platforms, and marketing automation

tools. This allows for a more seamless experience for customers

and also provides valuable insights into customer behavior and

preferences.

32

Figure 2. Visual separation between head and body in software

development

Conclusion:

The research question aimed to understand the benefits of

headless development in the context of Salesforce Commerce

Cloud and find the best framework to achieve it. By leveraging

the benefits of APIs and separating the front-end logic from the

back-end data management, headless development can be highly

useful for Merkle (Hossain, 2022). Next steps will include further

investigation of which framework to use and why.

4.2.3. How to implement and utilize gathered findings in the context of Merkle?

Cause of the question:

The reason behind this question is to help find specific

frameworks that make best use of OOP principles. What is the

backend for them that also takes SFCC into account?

Methodology:

The research methodology for this study involved a literature

review and consultation with developers who were participants in

the study. Based on the previous research, it was determined that

the most logical next step was to identify the frameworks on the

front-end and back-end that would seamlessly integrate with the

33

headless development approach in the context of Salesforce

Commerce Cloud.

To achieve this, three popular front-end frameworks, React,

Angular, and Vue, were investigated as they are the latest trend in

the market. The investigation involved comparing each

framework to determine what problems they solve best and how

they can be integrated with the headless development approach.

As this project assignment was mostly front-end oriented, the

focus was primarily on the front-end framework. However, it was

also important to ensure that the chosen front-end framework

would work seamlessly with the back-end solution in SFCC.

Results:

React, Angular, and Vue are popular JavaScript

frameworks/libraries commonly used for building user interfaces

(UIs) in web applications. (Staff, CACM. 2016). React is a

JavaScript library developed by Facebook. Developers can create

reusable UI components that update effectively and adapt to data

changes. React follows a component-based architecture, where

the UI is broken down into reusable and independent components

(Muldoon, 2023).

Angular is a comprehensive JavaScript framework developed by

Google. It provides a complete solution for building web

applications, including components, data binding, dependency

injection, routing, and more. It employs a two-way data binding

approach, where changes in the UI and data model are

automatically synchronized (Uzayr et al., 2019).

Vue is a progressive JavaScript framework that aims to be

approachable and versatile. It allows developers to build

interactive UIs by composing reusable components. Vue takes a

middle ground between React and Angular, offering simplicity

and ease of use (Filipova, 2016).

34

It is known for its gentle learning curve, flexibility, and smooth

integration with existing projects.

Finally, in order to summarize the results from these findings I’ve

listed four important factors when choosing the adequate front-

end framework:

• Learning Curve: React and Vue have a relatively easier

learning curve compared to Angular, which has a steeper learning

curve due to its complex concepts like dependency injection.

• Size and Performance: React and Vue have smaller

bundle sizes and are generally considered lightweight. Angular

has a larger bundle size due to its extensive features but provides

excellent performance optimizations.

• Ecosystem and Community: React has a large and active

community with a vast ecosystem of libraries and tools. Vue has a

growing community and ecosystem, while Angular has a mature

ecosystem backed by Google.

• Integration and Flexibility: Vue is highly flexible and

can be easily integrated into existing projects. React is also

flexible but requires making more decisions about libraries and

tools.

Today’s standards of using those architectures are by utilizing

Node.js. For web-applications this is currently the most popular

and best solution in terms of scalability, maintainability and

complexity.

Conclusion:

Based on the findings research question, how can the findings

from the investigation of React, Angular, and Vue be

implemented and utilized in the context of Merkle? Ultimately,

the choice between React, Angular, and Vue depends on the

project requirements, team expertise, and personal preferences.

Each framework has its strengths and is widely adopted in the

35

industry, so choosing the right one involves considering factors

like project complexity, scalability, performance needs, and

developer familiarity. Each of these frameworks could be used for

this project, but could every other project in the company be

adapted for each of these frameworks? Does each developer have

time to study a brand-new framework?

Overall, the findings suggest that a careful consideration of all

factors involved is necessary to implement and utilize the findings

of the investigation of React, Angular, and Vue in the context of

Merkle.

36

5. DEVELOPMENT PHASE

After answering all the questions in chapter 4, I gained a sufficient understanding of the concepts needed to build the project theoretically.

This phase can be referred to as the conception phase, where I methodically gathered the required information, even if it meant starting with

an understanding of the e-commerce business domain. This chapter will introduce the development process of the project - the coding of the

web-application. (Appendix D)

5.1. DEVELOPING FEATURES FOR MERKLE

Chapter 4 provided me with valuable insights, including the fact

that the company uses a CXM system through the SalesForce

Commerce Cloud. This helped me understand the essential

features needed for the project, which I prioritized using the

MoSCoW method from table 1. I then delved deeper into

SalesForce Commerce Cloud to understand its code base and

learned that it will soon adopt the headless approach. This

information helped me create clear criteria for the software

architecture. However, since there were multiple valid

frameworks to choose from, I needed to answer several sub-

questions to understand the general technology stacks used in

Merkle and best coding practices to keep in mind. Combining the

outputs from Chapters 4 and 5, I was able to create a feature-proof

web application that benefits Merkle.

37

5.1.1. How to develop features in an effective way for Merkle?

Cause of the question:

The cause of this question comes from the conclusion from point

4.2.3. There I found that I couldn’t decide on a front-end

framework just by doing general literature research. The results

should be adapted in order to help developers at Merkle.

Methodology:

As part of the research methodology, to identify the most used

front-end and back-end technologies among developers and the

daily challenges they face, a survey was conducted and followed

up with an interview (Appendix E). The information gathered

will be used to improve the chosen framework and address

developers' daily blockers, resulting in a feature-rich web

application that delivers value to Merkle.

Results:

As part of the research methodology, to identify the most

commonly used front-end and back-end technologies among

developers and the daily challenges they face, a survey was

conducted and followed up with interviews. The information

gathered will be used to improve the chosen framework and

address developers' daily blockers, resulting in a feature-rich web

application that delivers value to Merkle.

Figure 3: Survey responses – frameworks used on the back-end.

38

Figure 4: Survey responses – frameworks used on the front-end.

The most common issues encountered in maintaining e-commerce

websites were slow page load times, difficulty making changes to

the site, bugs and errors, and poor performance on mobile

devices. Strategies found effective for maintaining code include

regular code reviews, consistent documentation, frequent

refactoring, and regular performance monitoring. Respondents

reported that code is refactored on an irregular basis, with some

doing it every quarter or every two sprints, while others do it

every year or when a problem on production occurs.

Conclusion:

To effectively develop features for Merkle in an effective way, it

is important to note that Developers in Merkle would mostly write

code in React which now leads me to choose my framework of

choice to be React. In the context of Merkle that would be the best

fit as it would require less to be learned and adapted, since most

of the developers already have the knowledge. Further I now

know to look for tools on top of react that solve - minimize bugs,

or at least simplify the debugging process and simplify the file

structure. For the backend it was almost certain in advance, but

here I confirmed that Node.js would be most suitable. I started

writing the project as a SPA with React.js and Node.js with the

architecture suited for SFCC - controller based endpoints and

clear separation between the backend and the frontend.

39

5.1.2. What does it mean to design code for scalability and maintainability in the

long run?

At this point, the research will discuss, analyze, and determine the best tools and technologies that could be implemented. Based on all the

results obtained thus far, the focus will be on identifying new technologies and tools that can assist developers in their work.

5.1.2.1. Future-proofing the code on the front-end

Cause of the question:

After deciding to use React as the framework for development,

the next step was to consider ways to future-proof the code. This

involved identifying the best tools and technologies that would

enable developers at Merkle to take advantage of a headless

approach in the future. To achieve this, I researched the latest

technologies and tools that could be used with React in the web

development world. I also considered the limitations of React as a

tool for complex e-commerce websites and looked for ways to

address these limitations.

Methodology:

The methodological approach taken in this study was a literature

review, focused on identifying solutions that could be

implemented on top of React.

Results:

Through the literature review, two potential solutions were

identified: Next.js and React Redux. Next.js is a framework for

40

Figure 5: Data flow of states with Redux

Source: https://dev.to/dhintz89/what-is-redux-anyway-part-

2-1gf4

building server-side rendered (SSR) and statically generated

(SSG) React applications, providing features such as server-side

rendering, automatic code splitting, and simplified routing. This

makes it easy to build fast and scalable web applications.

Additionally, Next.js is built on top of React and adds server-side

rendering capabilities, resulting in pre-rendered pages on the

server that are delivered to the client as HTML (Thakkar, 2020).

This improves initial page load times and search engine

optimization (SEO).

React Redux, on the other hand, is a state management library for

React applications. It provides a predictable state container that

helps manage the application's state in a centralized manner.

React Redux follows the principles of Flux architecture and is

commonly used with React to manage the state of large-scale

applications (Teimur, 2022). This allows for better organization,

https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4
https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4

41

Figure 6. Data flow of states with Redux

Source: https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4

separation of concerns, and data flow control in React

applications.

Conclusion:

While Next.js and React Redux serve different purposes, they can

be used together to build powerful web applications.

Today’s standards prove that both could be implemented, but the

time limitations of the project wouldn’t allow me. I chose to

implement Redux on top of React as its state management is far

more important for the project, based on the previous results of

the survey and expert interview. Devs have trouble writing new

functionalities and maintaining code - Redux will help with that

by a big margin, having a general ‘store’ for all the states in the

Project and that could be accessed anywhere. (Hintz, 2020)

https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4

42

5.1.2.2. Help developers be efficient on the back end

Question:

What tools or strategies can be implemented to improve the

efficiency and productivity of developers on the backend?

Methodology:

The methodological approach taken in this study was to identify

tools and strategies that could improve the efficiency and

productivity of developers on the backend. The study was

conducted as a case study, using my personal work routine as an

example.

Results:

Through the case study, two tools were identified that could

improve the backend development process. Firstly, it was found

that using TypeScript with Redux and React could provide serious

leverage when extracting data from the backend. . However, TS

could be used also on the backend as well for the API part of the

project, where I extract the response from the provided API and

adapt it so it could be used on the front. That is why I decided to

strictly use .ts and .tsx files in the whole project. Five minutes of

typifying the response from an API request, could save tons of

time navigating the project and populating the Redux store with

that information.

While working on that part I noticed that backend was a hassle to

work with despite being just a simple project so far. My

experience was mostly saving and manually refreshing the front

so that I could manually refresh the backend by starting in

separately. Secondly, the study identified Nodemon as a tool for

Node.js applications that automatically restarts the server

whenever changes are made to the source code. It monitors the

43

files in the application directory and, upon detecting any

modifications, it gracefully restarts the server. Nodemon saves

developers from manually stopping and starting the server every

time, a change is made, thus providing an efficient and

streamlined development workflow.

Nodemon is particularly useful during the development phase as it

helps in rapidly iterating and testing code changes without the

need for manual server restarts. It eliminates the need to manually

track file changes and relaunch the application, saving developers

time and effort.

Conclusion:

Nodemon increases the complexity a little bit but that is only

while it is being set up. After that it is just extra time that could be

devoted to fixing the bugs and implementing features rather than

waiting for the app to restart.

Nodemon, with further implementation of TypeScript on the

backend proved to be an excellent solution. My company mentor

also liked it a lot and wondered why no one came up with that

before.

That’s why I refactored the code from initial JavaScript for the

frontend & backend to only TypeScript and gave types and

interfaces to all modules. Furthermore, I set up Nodemon for hot

refreshes on the backend

44

Figure 8. Representation of MVC in the folder structure of

the repository the front-end for the react app components.

5.2. IMPLEMENTATION

To implement the proposed solution for Merkle, I adopted a Model-View-Controller (MVC) architecture, (MVC) pattern plays a crucial role

in this transformation from a monolith architecture to a headless architecture, which promotes the separation of concerns and divides the

application into three components: Model (data layer), View (user interface), and Controller (logic layer). This separation enabled easier

maintainability, modularity, and extensibility. I implemented the reference architecture website using this architecture (Sitecore, n.d.).

Figure 7. The API is the folder dedicated for the backend (business logic),

45

On the backend, I found that using Typescript with Redux and React provided serious leverage when extracting data

from the backend. I also identified Nodemon as a tool for Node.js applications that automatically restarts the server

whenever changes are made to the source code. This tool saves developers from manually stopping and starting the

server every time, a change is made, thus providing an efficient and streamlined development workflow. (Cronj.

2023)

On the frontend, transitioning from having no

frontend framework to adopting React with

Redux involved a fundamental shift in how

the frontend code was structured and

managed. This made it easy to build fast and

scalable web applications. React Redux, on

the other hand, is a state management library

for React applications.

Figure 9. Code view of the navigation bar with React.

Figure 10. Front end folder.

46

It provides a predictable state container that helps manage the

application's state in a centralized manner. React Redux follows the

principles of Flux architecture and is commonly used with React to

manage the state of large-scale applications. Redux enforces a

unidirectional data flow, which means that data flows in a single

direction within the application. Actions are dispatched to update the

state in the Redux store, and components subscribe to changes in the

store to reflect those changes in the user interface. (GeeksforGeeks,

2023). Reducers in Redux are pure functions responsible for

handling state changes based on dispatched actions.

 Figure 11. Redux Reducer designated to retrieve

content based on changes on the front-end.

47

Strategies that were found effective for maintaining code included regular code reviews, consistent documentation, frequent refactoring, and

regular performance monitoring. Respondents reported that code was refactored on an irregular basis, with some doing it every quarter or

every two sprints, while others did it every year or when a problem on production occurred. The frontend implemented using cutting edge web

technologies such as React with Redux receives the response from the backend. The data within the response is parsed and processed on the

frontend to extract the product information. Using the extracted product information, the

frontend dynamically generates the necessary HTML elements and CSS styles to display

the products on the webpage. This process ensures a responsive and user-friendly interface.

Figure 12. Typification of the response returned

from the API for the Product Description Page

(PDP).

Figure 13. Folder structure of redux components.

Figure 13. Typification of the response returned

from the API for the Product Description Page

(PDP).

48

5.2.1. Agile Approach for Merkle's E-commerce

To validate the practical benefits of the proposed solution for the proposed reference architecture for Merkle's e-commerce website

development process, I implemented it in a small team that comprised the sales members within the company and tested it with the developers

using guerrilla testing. The developer found the proposed implementation to be useful, and his feedback helped us refine the solution. The

team then pitched the implementation to a client, who was pleased with the proposal and accepted the implementation of our proof of concept

for their Asian market. The implementation involved several technical aspects, such as modifying the existing website code to allow for

dynamic content loading, creating a new database to store the content, and developing a custom CMS to manage the contents.

To document the implementation, I created a user guide as a README.md file on github.com that provides a step-by-step guide on how to

use the implemented solution, and a manual that includes screenshots and descriptions of the various features and functionalities of the

solution was made available.

To deploy the solution from the study, I identified the infrastructure required, including the software, and networking components of Merkle.

Together with other developers, we developed a detailed plan for deploying the solution, including the sequence of steps required to deploy

the solution, any dependencies or prerequisites, integration with Jenkins CI/CD, and hosting.

To ensure that the proposed architecture remains functional and up to date, I plan to update it regularly to address any bugs, security

vulnerabilities, or performance issues that may arise. I also plan to implement a monitoring system that regularly checks the health of the

solution and alerts the team in case of any issues or errors. I will regularly back up the architecture to ensure that data is not lost in case of any

49

issues or errors. Additionally, I will provide technical support to users to help them troubleshoot any issues that may arise and ensure that the

solution is functioning as intended.

Incorporating an Agile development methodology into the implementation process will further enhance the success of Merkle's e-commerce

website project. Agile emphasizes collaboration, customer feedback, and continuous improvement. By adopting agile principles, we can foster

a more flexible and iterative approach to software development, allowing us to adapt to changing requirements and deliver incremental

updates. This approach will enable us to work closely with the client and stakeholders, gathering feedback early and ensuring that the final

product aligns with their expectations. With frequent updates and regular communication, Agile will help us maintain a functional and

customer-centric solution, providing a seamless user experience in the Asian market and beyond

6. CONCLUSION

The research question "What strategies can be employed to

develop and implement an optimized reference architecture

website for unifying e-commerce platforms, to streamline the

development process and enhance the pitching strategy?" led to

several key findings regarding the development of an e-commerce

website for Merkle. Firstly, prioritizing easy navigation, high-

quality product visuals, user-generated reviews, ratings, and

personalized experiences based on customer preferences and

behaviors greatly enhance the overall user experience. To

implement these functionalities, a MoSCoW table was created to

50

prioritize and guide the development phase. Another significant

finding was the complexity of SFCC projects, particularly the

legacy code used in Merkle's cartridges and controller-based

endpoints. To address this challenge, a suitable backend

framework had to be identified, and the emerging trend of

headless development was leveraged to design and adapt the

reference architecture. (Appendix F)

Exploring headless development further revealed its alignment

with Object-Oriented Programming (OOP) principles. This

realization opened possibilities for utilizing front-end frameworks

such as React, Angular, and Vue, which are known for their OOP

concepts, alongside Node.js for the backend of Merkle. While this

served as a general orientation, the next steps involved conducting

qualitative research to determine the most suitable framework

based on project requirements, team expertise, and personal

preferences.

Taking into account the preferences and expertise of the

developers at Merkle, React emerged as the most fitting choice

for front-end and Node.js for the backend development. This

decision was reinforced by the desire to minimize the learning

curve and leverage the existing knowledge within the

development team. Additionally, I recognized the importance of

finding tools and libraries that simplify debugging processes and

file structure organization, complementing the React ecosystem.

51

Demo

youtu.be/0TdmLu7DYlI

GitHub Repository

github.com/ayonkov1/graduation-project-reference-architecture

Since I was not allowed to export the internal APIs provided for fetching data, I mocked the requests. This question could be a point but

relatively short as it is - How could I mock requests? Did a literature study and found mocky.io was the best tool. Anyway, I had to mock the

requests which meant I had to manually select the data, in order not to expose any sensitive information of the client. For 48 pages of

products, it was difficult to mock 2304 products, so I mocked only the first one. That is because all the scripts within the project are written to

be reusable, so it doesn’t matter if the products are many or one - the code will work the same. In the YouTube video I have shown what the

website looked like with many products to give you a better perception.

https://youtu.be/0TdmLu7DYlI
https://github.com/ayonkov1/graduation-project-reference-architecture

52

7. RECOMMENDATION ABOUT INTEGRATION

Based on the conclusions drawn from this project, I would

recommend implementing the proposed improvements to the

projects at Merkle.

By prioritizing user experience and incorporating the identified

functionalities, such as easy navigation, high-quality visuals, user-

generated reviews, ratings, and personalization, Merkle can

enhance customer satisfaction and loyalty, thus leading to higher

client retention and acquisition.

Furthermore, adopting a headless development approach, utilizing

React as the preferred front-end framework, and leveraging

Node.js for the backend will contribute to improved development

efficiency and maintainability.

Implementing Redux for state management and incorporating

Nodemon for hot refreshes and TypeScript for codebase

enhancement will further streamline the development process and

reduce potential errors. By embracing these recommendations and

taking into account the findings of this thesis, Merkle can create a

robust and user-friendly e-commerce platform, empowering both

developers and businesspeople.

53

REFERENCES

1. Masyhuri, M. (2022). Key Drivers of Customer Satisfaction on the E-Commerce Business. East Asian Journal of Multidisciplinary

Research, 1(4), 657–670. https://doi.org/10.55927/eajmr.v1i4.405

2. Muñoz, M. (2019, July 26). 5 Challenges in ecommerce Development | Sales Layer. Sales Layer. https://blog.saleslayer.com/5-challenges-

in-e-commerce-development

3. What We Do | Merkle. (n.d.). Merkle. https://www.merkle.com/what-we-

do#:~:text=We%20help%20brands%20build%20dreams,call%20this%20customer%20experience%20transformation

4. Methods - ICT research methods. (n.d.). https://ictresearchmethods.nl/Methods

5. Valle, P. J., Garcés, L., Volpato, T., Martínez-Fernández, S., & Nakagawa, E. Y. (2021). Towards suitable description of reference

architectures. PeerJ Computer Science, 7, e392. https://doi.org/10.7717/peerj-cs.392

6. Pääkkönen, P., & Pakkala, D. (2015). Reference Architecture and Classification of Technologies, Products and Services for Big Data

Systems. Big Data Research, 2(4), 166–186. https://doi.org/10.1016/j.bdr.2015.01.001

7. Van Geest, M., Tekinerdogan, B., & Rodriguez, D. (2021). Design of a reference architecture for developing smart warehouses in industry

4.0. Computers in Industry, 124, 103343. https://doi.org/10.1016/j.compind.2020.103343

8. Sulova, S. (2019). A SYSTEM FOR E-COMMERCE WEBSITE EVALUATION. In International Multidisciplinary Scientific

GeoConference SGEM .. https://doi.org/10.5593/sgem2019/2.1/s07.004

9. Rahman, M. S. (2021). E-commerce & Alibaba’s business strategy. 1. 20. ResearchGate.

https://www.researchgate.net/publication/358199646_E-commerce_Alibaba's_Business_Strategy

10. Amazon. (2020). The SAGE International Encyclopedia of Mass Media and Society. https://doi.org/10.4135/9781483375519.n28

https://doi.org/10.55927/eajmr.v1i4.405
https://blog.saleslayer.com/5-challenges-in-e-commerce-development
https://blog.saleslayer.com/5-challenges-in-e-commerce-development
https://www.merkle.com/what-we-do#:~:text=We%20help%20brands%20build%20dreams,call%20this%20customer%20experience%20transformation
https://www.merkle.com/what-we-do#:~:text=We%20help%20brands%20build%20dreams,call%20this%20customer%20experience%20transformation
https://ictresearchmethods.nl/Methods
https://doi.org/10.7717/peerj-cs.392
https://doi.org/10.1016/j.bdr.2015.01.001
https://doi.org/10.1016/j.compind.2020.103343
https://doi.org/10.5593/sgem2019/2.1/s07.004
https://www.researchgate.net/publication/358199646_E-commerce_Alibaba's_Business_Strategy
https://doi.org/10.4135/9781483375519.n28

54

11. Su, C., & Flew, T. (2020). The rise of Baidu, Alibaba and Tencent (BAT) and their role in China’s Belt and Road Initiative (BRI). Global

Media and Communication, 17(1), 67–86. https://doi.org/10.1177/1742766520982324

12. Staff, C. (2016). React. Communications of the ACM, 59(12), 56–62. https://doi.org/10.1145/2980991

13. Al Moaiad, Yazeed & Ts,. (2023). A Comparative Study Of The E-Commerce Platforms Of Amazon and eBay. pnrjournal.com.

https://doi.org/10.47750/pnr.2023.14.S02.152

14. Yogish Pai, U. & Nandha Kumar, K. G., (2021). E-Commerce to Multinational Conglomerate: Journey of Alibaba Group – A Case Study.

International Journal of Case Studies in Business, IT, and Education (IJCSBE), 5(1), 25-35. DOI: http://doi.org/10.5281/zenodo.4544394.

15. Nnn. (2023). EBay.com USA: the ultimate online marketplace. NNN FAQ. https://nnn.ng/faq/12035/

16. Round, M. (2004) Presentation to E-metrics, London, May 2005. www.emetrics.org. https://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf

17. (Tryzens., 2021) Part 1: The path to headless on Salesforce Commerce Cloud (SFCC) https://tryzens.com/industry-trends/part-1-the-path-

to-headless-on-salesforce-commerce-cloud-sfcc/

18. Salesforce Commerce Cloud B2C Commerce Cartridge installation and Configuration (Video tutorial) | CloudInary. (n.d.).

https://cloudinary.com/documentation/salesforce_install_config_tutorial

19. How Does the Frontend Communicate with the Backend? (2019, March 19). vsupalov.com. https://vsupalov.com/how-backend-and-

frontend-communicate/

20. Emadamerho-Atori, N. (n.d.). [GuIDE] Is Headless architecture right for you? Prismic Blog. https://prismic.io/blog/headless-architecture-

guide

21. Cyntexa. (2022, January 5). Latest Salesforce Commerce Cloud Tools To Increase The Experience Of Developers. Medium.

https://cyntexa.medium.com/latest-salesforce-commerce-cloud-tools-to-increase-the-experience-of-developers-

946c65effb1e?source=user_profile---------14-------------------------------

https://doi.org/10.1177/1742766520982324
https://doi.org/10.1145/2980991
https://doi.org/10.47750/pnr.2023.14.S02.152
http://doi.org/10.5281/zenodo.4544394
https://nnn.ng/faq/12035/
http://www.emetrics.org/
https://ai.stanford.edu/~ronnyk/emetricsAmazon.pdf
https://tryzens.com/industry-trends/part-1-the-path-to-headless-on-salesforce-commerce-cloud-sfcc/
https://tryzens.com/industry-trends/part-1-the-path-to-headless-on-salesforce-commerce-cloud-sfcc/
https://cloudinary.com/documentation/salesforce_install_config_tutorial
https://vsupalov.com/how-backend-and-frontend-communicate/
https://vsupalov.com/how-backend-and-frontend-communicate/
https://prismic.io/blog/headless-architecture-guide
https://prismic.io/blog/headless-architecture-guide
https://cyntexa.medium.com/latest-salesforce-commerce-cloud-tools-to-increase-the-experience-of-developers-946c65effb1e?source=user_profile---------14-------------------------------
https://cyntexa.medium.com/latest-salesforce-commerce-cloud-tools-to-increase-the-experience-of-developers-946c65effb1e?source=user_profile---------14-------------------------------

55

22. Muldoon, C., Görgü, L., O’Sullivan, J. M., Meijer, W. G., Masterson, B., & O’Hare, G. M. P. (2021). Engineering testable and

maintainable software with Spring Boot and React. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING.

https://doi.org/10.36227/techrxiv.15147723.v1

23. Uzayr, S. B., Cloud, N., & Ambler, T. (2019). Angular. In Apress eBooks (pp. 209–223). https://doi.org/10.1007/978-1-4842-4995-6_7

24. O. Filipova, Learning Vue.js 2. Packt Publishing Ltd, 2016. https://sd.blackball.lv/library/learning_vue.js_2_(2016).pdf

25. Gasanov, T. (2022). The best React state management tools for enterprise applications. Retrieved from

https://www.researchgate.net/publication/301959679_What_Is_React

26. Li, Z., & Xie, F. (2023). Concolic Testing of Front-end JavaScript. In F. Arbab, & M. Sirjani (Eds.), Formal Methods and Software

Engineering (pp. 46-63). Springer International Publishing. https://doi.org/10.1007/978-3-031-30826-0_4

27. Thakkar, M. (2020). Adding server-side rendering to your React application. In M. Thakkar (Ed.), Full-stack React projects (pp. 79-96).

Apress. https://doi.org/10.1007/978-1-4842-5869-9_4

28. Sayfan, G. (2019). Testing React.js Applications with Jest: A Complete Introduction to Fast, Easy Testing. Apress.

https://doi.org/10.1007/978-1-4842-3980-3

29. Mostafa, S., & Wang, X. (2014). An Empirical Study on the Usage of Mocking Frameworks in Software Testing. In Proceedings -

International Conference on Quality Software (pp. 127-132). https://doi.org/10.1109/QSIC.2014.19

30. Converting existing Sitecore MVC applications to the Jamstack architecture with Headless Rendering. (n.d.).

https://doc.sitecore.com/xp/en/developers/hd/21/sitecore-headless-development/converting-existing-sitecore-mvc-applications-to-the-

jamstack-architecture-with-headless-rendering.html

31. The Advantages Of Headless Content Management Systems - NP GROUP. (2016, June 27). https://www.npgroup.net/blog/the-

advantages-of-headless-content-management-systems/

32. Singh, J. (2021, December 9). Headless architecture: the new normal | Accenture. Insights. https://www.accenture.com/nl-

en/blogs/insights/headless-architecture-why-its-becoming-the-new-normal

https://doi.org/10.36227/techrxiv.15147723.v1
https://doi.org/10.1007/978-1-4842-4995-6_7
https://sd.blackball.lv/library/learning_vue.js_2_(2016).pdf
https://www.researchgate.net/publication/301959679_What_Is_React
https://doi.org/10.1007/978-3-031-30826-0_4
https://doi.org/10.1007/978-1-4842-5869-9_4
https://doi.org/10.1007/978-1-4842-3980-3
https://doi.org/10.1109/QSIC.2014.19
https://doc.sitecore.com/xp/en/developers/hd/21/sitecore-headless-development/converting-existing-sitecore-mvc-applications-to-the-jamstack-architecture-with-headless-rendering.html
https://doc.sitecore.com/xp/en/developers/hd/21/sitecore-headless-development/converting-existing-sitecore-mvc-applications-to-the-jamstack-architecture-with-headless-rendering.html
https://www.npgroup.net/blog/the-advantages-of-headless-content-management-systems/
https://www.npgroup.net/blog/the-advantages-of-headless-content-management-systems/
https://www.accenture.com/nl-en/blogs/insights/headless-architecture-why-its-becoming-the-new-normal
https://www.accenture.com/nl-en/blogs/insights/headless-architecture-why-its-becoming-the-new-normal

56

33. Creating Reusable React Components for Faster and More Efficient Development. (n.d.). Cronj. Retrieved May 5, 2023, from

https://www.cronj.com/blog/creating-reusable-react-components-for-faster-and-more-efficient-development/

34. GeeksforGeeks. (2023). ReactJS Unidirectional Data flow. GeeksforGeeks. https://www.geeksforgeeks.org/reactjs-unidirectional-data-

flow/

35. Why use React Redux? | React Redux. (2021, June 19). https://react-redux.js.org/introduction/why-use-react-redux

36. Hintz, D. (2020). What is Redux Anyway? (Part 2). DEV Community. https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4

37. Hossain, Mostaqim & Habib, Mubassir & Hassan, Mainuddin & Soroni, Faria & Khan, Mohammad. (2022). Research and Development

of an E-commerce with Sales Chatbot. 557-564. 10.1109/AIIoT54504.2022.9817272.

38. Jain, Ankit. (2023). Impacts of cloud computing in India on E- commerce businesses.

https://www.researchgate.net/publication/370560501_Impacts_of_cloud_computing_in_India_on_E-_commerce_businesses

https://www.cronj.com/blog/creating-reusable-react-components-for-faster-and-more-efficient-development/
https://www.geeksforgeeks.org/reactjs-unidirectional-data-flow/
https://www.geeksforgeeks.org/reactjs-unidirectional-data-flow/
https://react-redux.js.org/introduction/why-use-react-redux
https://dev.to/dhintz89/what-is-redux-anyway-part-2-1gf4
https://www.researchgate.net/publication/370560501_Impacts_of_cloud_computing_in_India_on_E-_commerce_businesses

57

APPENDICES

Appendix A - Project plan:

58

59

60

61

62

Appendix B:

Research Document ‘Essential features of reference architecture for e-commerce websites’:

63

64

65

66

67

68

69

Appendix C:

Research Document ‘Connecting Reference Architecture with existing technologies’:

70

71

72

73

Appendix D:

Research Document ‘Designing and Developing Features for Merkle’:

74

75

76

77

78

Appendix E:

Results from Survey in Appendix B

79

80

81

82

83

84

85

Appendix F Screenshots of website final version

Remark: The placeholder for a logo is temporarily the name of the project and the name of the developer

Screenshot 1 (Landing Page)

86

Screenshot 2 (Landing Page Scrolled)

87

Screenshot 3 (Product Listing Page)

88

Screnshot 4 (Product Details Page)

89

Screenshot 5 (Product Details Page with selected size and product added to bag)

90

Screenshot 5 (Checkout Page)

91

Screenshot 6 (Checkout page two products)

92

Screenshot 7 (Order submitted)

